博客
关于我
SpringBoot强化系列:线程池及CountDownLatch并行执行任务
阅读量:266 次
发布时间:2019-03-01

本文共 577 字,大约阅读时间需要 1 分钟。

多线程处理与任务调度的效率优化

在多线程处理中,任务的执行效率取决于任务本身的执行时间。具体而言,多线程处理多个任务的总耗时,实际上是由执行时间最长的任务决定的,而不是所有任务时间的简单叠加。

现有三个任务需要处理,分别是任务1、任务2和任务3。根据任务执行时间如下表所示:

序号 任务 耗时
1 任务1 t1
2 任务2 t2
3 任务3 t3

根据上表可知,任务2的执行时间t2大于任务3的执行时间t3,而任务3的执行时间t3又大于任务1的执行时间t1(t2 > t3 > t1)。因此,在多线程环境下,所有任务同时执行时,系统所需的总耗时将由任务2的执行时间t2决定。

多线程处理多个任务的特点在于,每个任务可以独立于其他任务运行。因此,系统的总耗时仅受执行时间最长的任务的限制。这意味着,尽管有多个任务同时运行,但最终的完成时间仍然取决于最长任务的执行时间。

相比之下,如果采用单线程处理,所有任务将依次执行,总耗时将是各任务执行时间的总和(t1 + t2 + t3)。这种方式的效率显著低于多线程处理,因为多线程可以并行执行任务,充分发挥硬件资源的利用率。

通过上述分析,可以看出多线程处理能够有效提升任务执行效率。然而,实际的效率提升程度仍然取决于任务本身的执行特性,特别是在任务间存在严重资源竞争或依赖关系的情况下,可能会影响整体性能表现。

转载地址:http://baht.baihongyu.com/

你可能感兴趣的文章
no1
查看>>
NO32 网络层次及OSI7层模型--TCP三次握手四次断开--子网划分
查看>>
NOAA(美国海洋和大气管理局)气象数据获取与POI点数据获取
查看>>
NoClassDefFoundError: org/springframework/boot/context/properties/ConfigurationBeanFactoryMetadata
查看>>
node exporter完整版
查看>>
Node JS: < 一> 初识Node JS
查看>>
Node Sass does not yet support your current environment: Windows 64-bit with Unsupported runtime(72)
查看>>
Node 裁切图片的方法
查看>>
Node+Express连接mysql实现增删改查
查看>>
node, nvm, npm,pnpm,以前简单的前端环境为什么越来越复杂
查看>>
Node-RED中Button按钮组件和TextInput文字输入组件的使用
查看>>
Node-RED中Switch开关和Dropdown选择组件的使用
查看>>
Node-RED中使用html节点爬取HTML网页资料之爬取Node-RED的最新版本
查看>>
Node-RED中使用JSON数据建立web网站
查看>>
Node-RED中使用json节点解析JSON数据
查看>>
Node-RED中使用node-random节点来实现随机数在折线图中显示
查看>>
Node-RED中使用node-red-browser-utils节点实现选择Windows操作系统中的文件并实现图片预览
查看>>
Node-RED中使用node-red-contrib-image-output节点实现图片预览
查看>>
Node-RED中使用node-red-node-ui-iframe节点实现内嵌iframe访问其他网站的效果
查看>>
Node-RED中使用Notification元件显示警告讯息框(温度过高提示)
查看>>